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Abstract 83 

Cerebrospinal fluid (CSF) neurofilament light chain (NfL) has emerged as putative diagnostic 84 

biomarker in amyotrophic lateral sclerosis (ALS), but it remains a matter of debate, whether 85 

CSF total tau (ttau), tau phosphorylated at threonine 181 (ptau) and the ptau/ttau ratio could 86 

serve as diagnostic biomarker in ALS as well. Moreover, the relationship between CSF NfL 87 

and tau measures to further axonal and (neuro)degeneration markers still needs to be 88 

elucidated.  89 

Our analysis included 89 ALS patients (median (range) age 63 (33-83) years, 61% male, 90 

disease duration 10 (0.2–190) months) and 33 age- and sex-matched disease controls (60 91 

(32-76), 49%). NfL was higher and the ptau/ttau ratio was lower in ALS compared to controls 92 

(8,343 (1,795–35,945) pg/ml vs. 1,193 (612–2,616), H(1)=70.8, p<0.001; mean [SD] 0.17 93 

[0.04] vs. 0.2 [0.03], F(1)=14.3, p<0.001), as well as in upper motor neuron dominant 94 

(UMND, n=10) compared to classic (n=46) or lower motor neuron dominant ALS (n=31; for 95 

NfL: 16,076 (7,447–35,945) vs. 8,205 (2,651–35,138) vs. 8,057 (1,795–34,951), Z≥2.5, 96 

p≤0.01; for the ptau/ttau ratio: (0.13 [0.04] vs. 0.17 [0.04] vs. 0.18 [0.03], p≤0.02). In ALS, 97 

NfL and the ptau/ttau ratio were related to corticospinal tract (CST) fractional anisotropy (FA) 98 

and radial diffusivity (ROI-based approach and whole-brain voxelwise analysis). Factor 99 

analysis of mixed data (FAMD) revealed a co-variance pattern between NfL (factor load -100 

0.6), the ptau/ttau ratio (0.7), CST FA (0.8) and UMND ALS phenotype (-2.8). NfL did not 101 

relate to any further neuroaxonal injury marker (brain volumes, precentral gyrus thickness, 102 

peripheral motor amplitudes, sonographic cross-sectional nerve area), but a lower ptau/ttau 103 

ratio was associated with whole-brain gray matter atrophy and widespread white matter 104 

integrity loss. Higher NfL baseline levels were associated with greater UMN disease burden, 105 

more rapid disease progression, a 2fold to 3fold greater hazard of death and shorter survival 106 

times.  107 
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The findings that higher CSF NfL levels and a reduced ptau/ttau ratio are more associated 108 

with clinical UMN involvement and with reduced CST FA offer strong converging evidence 109 

that both are markers of central motor degeneration. Furthermore, NfL is a marker of poor 110 

prognosis, while a low ptau/ttau ratio indicates extramotor pathology in ALS.  111 
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Introduction 112 

Cerebrospinal fluid (CSF) neurofilament light chain (NfL) has emerged as putative diagnostic 113 

biomarker in several neurodegenerative conditions [1, 2], such as amyotrophic lateral 114 

sclerosis (ALS), and ALS patients reveal significantly higher levels compared to controls or 115 

disease mimics [3–9]. CSF neurofilaments seem also to aid as a prognostic biomarker [4, 5, 116 

8–11] and have been found to be higher in ALS patients with dominant upper motor neuron 117 

(UMN) involvement [4, 5, 12]. In the meanwhile, several studies have also taken account of 118 

serum NfL which has additionally proven great potential to discriminate between ALS and 119 

controls or disease mimics [7, 13, 14]. Compared to CSF, serum neurofilament might, 120 

however, be less sensitive towards clinical and electrophysiological measures of motor 121 

neuron degeneration [9, 15], emphasizing the pivotal role of CSF neurofilaments when taking 122 

account of the extent of neuroaxonal damage despite less convenient sampling. With the 123 

exception of few studies focusing on the corticospinal tract’s (CST) integrity applying 124 

diffusion tensor imaging (DTI) there is, however, nearly no data available how CSF 125 

neurofilaments relate to other biomarkers of peripheral (PNS) and central nervous system 126 

(CNS) neuroaxonal injury in ALS [6, 16]. Understanding their certain biomarker associations 127 

would indeed even improve the leading candidate role of CSF neurofilaments to aid as a 128 

promising outcome measure in future ALS therapeutic trials [17]. 129 

In contrast to CSF NfL, it is a matter of debate whether CSF total tau (ttau) and tau 130 

phosphorylated at threonine 181 (ptau) could serve as diagnostic biomarker in ALS as well, 131 

and there are just as many studies reporting elevated (abnormal) or normal levels in ALS 132 

when compared to controls [12, 18–25]. Two studies further proposed a reduction of the 133 

ptau/ttau ratio in ALS [23, 24]. While CSF tau seems not to universally correlate with disease 134 

progression in ALS [12, 19, 21, 26], few studies indeed found a relationship between higher 135 

CSF ttau or ptau at baseline and worse motor function [6, 23]. And, as for CSF NfL, with the 136 

exception of two DTI studies reporting an association between CST integrity and the 137 
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ptau/ttau ratio, but not with ttau or ptau, there are no data available how tau measures relate 138 

to further neuroaxonal injury markers in ALS [6, 23]. Continuing studies are thus indeed 139 

needed to determine the biomarker role of ttau and ptau in ALS. 140 

We thus here conducted several analyses taking especially into account how CSF NfL, ttau, 141 

ptau and the ptau/ttau ratio distribute within certain ALS subgroups, relate to further axonal 142 

and (neuro)degeneration markers such as motor amplitudes or precentral gyrus thickness 143 

and the ALS patients’ long-term outcome using a retrospective approach.  144 
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Methods 145 

ALS sample 146 

Our study comprised 89 ALS patients recruited from the Departments of Neurology, Otto-147 

von-Guericke University, Magdeburg and Hannover Medical School, Hannover, Germany. 148 

Patients were diagnosed by one of two experienced neurologists (S.V., S.P.) according to 149 

the revised El Escorial criteria comprising the assessment of the number of regions (bulbar, 150 

thoracic, upper limb, lower limb) with UMN (clinically) or lower motor neuron (LMN) 151 

involvement (clinically or via electromyography) [27]. Similar to previous studies, we also 152 

included patients presenting with LMN signs only (“suspected ALS”) [14]. The Penn UMN 153 

score was recorded to assess the UMN disease burden in the bulbar segment as well as in 154 

each of the four limbs [28] (see Supplemental). ALS clinical phenotypes were classified in 155 

line with operational definitions as specified previously [29, 30] (see Supplemental). At 156 

baseline patients underwent a clinical and diagnostic work-up (ALS functional rating scale 157 

(ALSFRS-R) total score, genetic testing, CSF measures of NfL, ttau, ptau, total protein and 158 

the CSF albumin/serum albumin ratio (Qalb × 10-3); for methodological details regarding CSF 159 

measurements and the performance of the NfL assay see Supplemental and Supplemental 160 

Table 1). Measures of neuroaxonal injury comprised those PNS and CNS markers 161 

commonly found to be altered in ALS: median and ulnar nerve compound motor action 162 

potential (CMAP) amplitudes [31, 32] and sonographic cross-sectional nerve area (CSA) [29, 163 

33] (for methodological details of PNS measures see [29]), precentral gyrus thickness, 164 

cortical and subcortical cerebral gray matter (GM) volumes and CST DTI metrics (e.g. 165 

fractional anisotropy (FA)) [34–37]. Disease duration was the time in months between 166 

symptom onset and a patient’s baseline visit. Disease progression rate (DPR) was 167 

determined as (48−ALSFRS-R)/disease duration (points per month). Patients underwent 168 

follow-up ALSFRS-R measurements within a mean [SD] time interval of 6 [8] months. Please 169 

see the Supplemental and Supplemental Figure 1 for the detailed demonstration of the 170 

availability of all measures. 171 
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Controls 172 

Cross-sectional CSF NfL, ttau and ptau measures were additionally conducted in a hospital-173 

based cohort of 33 neurologic patients (non-motor neuron disease controls), comprising 174 

cases with non-specific complaints who underwent lumbar puncture in terms of a diagnostic 175 

work up to rule out any neurologic condition. None of those disease controls suffered from 176 

any neuromuscular disorders (i.e. peripheral polyneuropathies, muscle or motor neuron 177 

disease) nor did they display any specific abnormalities on the neurological exam. CSF NfL 178 

data were available in all subjects, while tau measures have been conducted in 16 out of the 179 

33 control cases only (please see Supplemental Table 2 for further details). 180 

Standard protocol approvals, registrations, and patient consents 181 

The study was approved by the local ethics committee (No. 150 / 09, No. 07 / 17, No. 182 

16 / 17), and all subjects gave written informed consent. 183 

3T MRI measures of the brain 184 

All MRI sessions were performed on the same Siemens Verio 3 T system (Siemens Medical 185 

Systems, Erlangen, Germany) at the same site (Magdeburg), and all patients underwent 186 

exactly the same MRI protocol. 3D MPRAGE images were acquired (for bilateral precentral 187 

gyrus thickness, GM (GMV) and white matter (WMV) and total brain (TBV) volumes). 188 

Diffusion MRI data were used to compute the maps of DTI scalars (FA, mean diffusivity 189 

(MD), radial diffusivity (RD), axial diffusivity (AD)). Applying tract-based spatial statistics [38] 190 

whole-brain regression analysis with white matter hyperintensities (WMH) as covariate of no 191 

interest (assessed in a T2-weighted FLASH sequence according to the Fazekas scale [39]) 192 

was conducted (with the Randomise tool version 2.9 available in FSL, 5000 permutations, 193 

threshold-free cluster enhancement (TFCE), 2D optimization for tract-based DTI analysis). 194 

Individual median values of bilateral CST DTI scalars were additionally extracted (region of 195 

interest (ROI) analysis). For the in-depth demonstration of all imaging analyses see the 196 

Supplemental. 197 
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Statistics 198 

Gaussian distribution of data was assessed using the Shapiro-Wilk test. For group 199 

comparisons, for non-normally distributed data Kruskal-Wallis one-way analysis of variance 200 

(ANOVA) with post hoc pairwise Mann-Whitney U testing, and for normally distributed data 201 

ANOVA with Bonferroni post hoc testing was conducted. Relationship between distinct 202 

variables was calculated using bivariate correlations. Left- and right-sided CMAP amplitude 203 

and CSA measures were averaged, as there were no side differences. Compared to the left 204 

side, the right motor cortex was significantly thinner (Z=-5.0, p<0.001, Wilcoxon signed-rank 205 

test), which is a common finding in ALS [40]; left- and right-sided measures were thus 206 

considered separately. 207 

We then applied a factor analysis for mixed (quantitative and qualitative) data (FAMD) using 208 

FactoMineR version 1.27 [41] to capture co-variance patterns between distinct measures 209 

related to CSF NfL. We included CSF NfL, the ptau/ttau ratio, CST FA (which is the most 210 

sensitive DTI metrics in ALS [42]) and ALS phenotype into that model and extracted 1 211 

component with an eigenvalue > 1, which explained 40% of the variance in the data. 212 

Random intercept mixed effects linear models with CSF NfL (ttau, ptau, ptau/ttau ratio) 213 

median-split (main effect) and time (disease duration) in months (main effect) were 214 

calculated to assess CSF NfL (ttau, ptau, ptau/ttau ratio) × time interaction effects on 215 

longitudinal ALSFRS-R total score, and estimates (e) are given. In addition, Kruskal-Wallis 216 

one-way ANOVA or ANOVA was calculated to assess group effects of slow (averaged 217 

ALSFRS-R points lost per month <0.4 from disease onset to last available ALSFRS-R), 218 

intermediate (0.4, 1.4) and fast (>1.4) disease progressors [43] on baseline CSF NfL (ttau, 219 

ptau, ptau/ttau ratio). 220 

Cox proportional hazard models giving the hazard ratio (Exp(B)) and Kaplan-Meier analysis 221 

using a pairwise log rank test were conducted to compare survival rates and times between 222 
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ALS patients revealing low, medium or high CSF NfL (ttau, ptau, ptau/ttau ratio) levels 223 

(terciles) at baseline, and censoring was done at the date of the last follow-up. 224 

P-values <0.05 were deemed to be statistically significant. Analyses were performed using 225 

the IBM SPSS Statistics 23.0 software.  226 
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Results 227 

Sample 228 

Table 1 demonstrates the demographics and the clinical data of the whole sample. 229 

Supplemental Table 3 depicts the demographics and clinical data separately for the ALS 230 

phenotypes. 231 

CSF NfL, ttau, ptau and ptau/ttau ratio in controls and ALS 232 

CSF NfL lacked symmetry (controls: D(33)=0.9, p=0.02; ALS: D(89)=0.9, p<0.001) but 233 

revealing a significant positive skew distribution instead with most measures clustering at the 234 

lower end of the scale (controls: zskewness=2.6, p<0.01; ALS: zskewness=5.6, p<0.001; Figure 235 

1A). In ALS, distribution was the same for CSF ttau and ptau (ttau: D(88)=0.9, p<0.001, 236 

zskewness=4.4, p<0.001; ptau: D(88)=0.9, p<0.001, zskewness=4.1, p<0.001), while the ptau/ttau 237 

ratio was normally distributed (D(88)=1.0, p=0.4, zskewness=1.5, p>0.05). In controls all CSF 238 

tau measures were normally distributed (ttau: D(14)=0.9, p=0.5, zskewness=-0.7, p>0.05; ptau: 239 

D(14)=1.0, p=1.0, zskewness=-0.04, p>0.05; ptau/ttau ratio: D(14)=0.9, p=0.3, zskewness=1.3, 240 

p>0.05) (Figure 1B). 241 

In ALS compared to controls, NfL was higher (median (range) 8,343 (1,795–35,945) pg/ml 242 

vs. 1,193 (612–2,616), H(1)=70.8, p<0.001) and the ptau/ttau ratio was lower (mean [SD] 243 

0.17 [0.04] vs. 0.2 [0.03], F(1)=14.3, p<0.001; Figure 1A&B). There were no group 244 

differences for ttau and ptau (ALS vs. controls, ttau: 236 (96-666) pg/ml vs. 260 (122-373), 245 

ptau: 40 (17-99) pg/ml vs. 53 (20-80)). 246 

In ALS, NfL was related to Qalb (rho=0.2, p=0.04), and ttau and ptau were related to age 247 

(rho=0.4, p<0.001, respectively). There was no association with sex, disease duration, or 248 

onset site; NfL did relate to the ptau/ttau ratio (rho=-0.4, p<0.001; Figure 1C), but not to ttau 249 

and ptau. 250 



14 
 
 

 

Figure 1. Quantile function of CSF NfL values and the ptau/ttau ratio within the 

samples under investigation 

Graph demonstrates CSF NfL concentrations (A) and the ptau/ttau ratio (B) in controls 

(CON) and ALS. ALS patients compared to controls revealed significantly higher CSF NfL 

concentrations and a significantly lower ptau/ttau ratio. C demonstrates the significant 

relationship between CSF NfL and the ptau/ttau ratio in ALS. **p0.001. 

There was a significant effect of clinical phenotype on CSF NfL (H(2)=7.9, p=0.02) and on 251 

the CSF ptau/ttau ratio (F(2)=6.6, p=0.002). Pairwise comparisons revealed group 252 

differences between classic and upper motor neuron dominant (UMND) (NfL: Z=2.5, p=0.01; 253 

ptau/ttau ratio: p=0.02) or lower motor neuron dominant (LMND) and UMND ALS (NfL: 254 

Z=2.6, p=0.008; ptau/ttau ratio: p=0.001), with UMND compared to classic or LMND patients 255 

displaying higher NfL (16,076 (7,447–35,945) vs. 8,205 (2,651–35,138) vs. 8,057 (1,795–256 

34,951); Figure 2A) and a lower ptau/ttau ratio (0.13 [0.04] vs. 0.17 [0.04] vs. 0.18 [0.03]; 257 

Figure 2C). In PLS, NfL was lower than in ALS (7,043 (6,454–7,632)), and the ptau/ttau ratio 258 

was rather similar to the ratio in classic/LMND, but higher than in UMND ALS (0.16 [0.02]); 259 

as there were only 2 PLS cases (Table 1), they were, however, not considered for group and 260 

pairwise subgroup comparisons. 261 

There was, moreover, a significant relationship between higher NfL or a lower ptau/ttau ratio 262 

and greater UMN disease burden according to the Penn UMN score (rho=0.4, p<0.001, rho=-263 

0.2, p=0.03; Figure 2B&D). 264 
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Ttau and ptau did not differ across ALS phenotypes, and did not relate to the Penn UMN 265 

score. 266 

 

Figure 2. CSF NfL concentrations and the ptau/ttau ratio across the ALS disease 

spectrum 

When compared to classic and lower motor neuron dominant (LMND) ALS, upper motor 

neuron dominant (UMND) ALS phenotype was related to significantly higher CSF NfL 

concentrations (A) and a significantly lower ptau/ttau ratio (C). Higher CSF NfL levels and 

a smaller ptau/ttau ratio were moreover associated with a greater UMN disease burden as 

assessed by the Penn UMN score (B&D). *p0.05, ** p0.001. 

CSF NfL, ttau, ptau, the ptau/ttau ratio and biomarkers of neuroaxonal injury in ALS 267 

There was a medium-effect size relationship between NfL and median CST FA, MD and RD 268 

(ROI-based approach, rho=-0.5, p=0.001, rho=0.3, p=0.02, rho=0.5, p<0.001; Figure 3A&C). 269 

Correlations between NfL and median CST FA and RD remained significant when solely 270 
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considering the classic ALS patients (rho=-0.4, p=0.03, rho=0.4, p=0.05; please see the 271 

Supplemental and Supplemental Figure 2). For the whole ALS cohort, strong correlation 272 

between NfL and FA along the cortical spinal pathway additionally emerged from an 273 

unbiased whole-brain analysis and it was statistically significant at the stringent threshold of 274 

p<0.05 FWE corrected (Figure 3B). At the same statistical threshold, the regression analysis 275 

revealed also a positive correlation between NfL and RD which spatially overlapped with the 276 

distribution of the significant results in the FA analysis (Figure 3D). 277 

 

Figure 3. Relationship between CSF NfL and DTI metrics in ALS 

The relationship depicted between CSF NfL and median fractional anisotropy (FA) or 

median radial diffusivity (RD) of the corticospinal tract (CST) using a ROI-based approach 

is demonstrated in A&C. The results of the skeletonized whole-brain regression analysis 

for FA (panel B in red) and RD (panel D in blue) are overlapped to the mean FA map. The 

statistical threshold is set at p<0.05 FWE corrected. The images are displayed following 
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the radiological convention. 

Likewise, there was a medium-effect size relationship between the ptau/ttau ratio and 278 

median CST FA and RD (ROI-based approach, rho=0.4, p=0.01, rho=-0.3, p=0.03; Figure 279 

4A&C). Considering the whole-brain analysis, the correlation between the ptau/ttau ratio and 280 

DTI metrics survived the stringent FWE correction for multiple comparison (p<0.05) and 281 

partially overlapped with the results of the correlation analysis between NfL level and DTI 282 

metrics (Figure 3B&D and Figure 4B&D). In both cases the CST was involved (please see 283 

also the results of the ROI analysis, Figure 3A&C, Figure 4A&C), but the whole-brain 284 

analysis revealed that the ptau/ttau ratio was also related to a FA decrease in the genu of the 285 

corpus callosum, in the anterior portion of the corona radiata (bilateral), in the anterior portion 286 

of the cingulum WM (right), in the external capsule (left) and in anterior limb of the internal 287 

capsule (left) (Figure 4B). The ptau/ttau ratio was also correlated with increased RD values 288 

in all sections of the corpus callosum (Figure 4D). 289 
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Figure 4. Relationship between the CSF ptau/ttau ratio and DTI metrics in ALS 

The relationship depicted between the CSF ptau/ttau ratio and median FA or RD of the 

CST using a ROI-based approach is demonstrated in A&C. The results of the skeletonized 

whole-brain regression analysis for FA (panel B in red) and RD (panel D in blue) are 

overlapped to the mean FA map. The statistical threshold is set at p<0.05 FWE corrected. 

The images are displayed following the radiological convention. 

There was no relationship between NfL, ttau, ptau and the ptau/ttau ratio and WMH. 290 

FAMD revealed a co-variance pattern between CSF NfL (factor load -0.6), the ptau/ttau ratio 291 

(0.7), CST FA (0.8) and UMND ALS phenotype (-2.7), which has to be interpreted this way, 292 

that high NfL together with a lower ptau/ttau ratio and CST FA decrease is found in patients 293 

with dominant UMN involvement. 294 

A lower ptau/ttau ratio was, moreover, related to smaller GMV (r=0.3, p=0.02). There was no 295 

association between CSF NfL, ptau, ttau and the ptau/ttau ratio and any further PNS and 296 

CNS axonal or (neuro)degeneration ALS marker (e.g. nerve CSA, CMAP amplitudes, cortical 297 

thickness of the precentral gyrus). 298 

CSF NfL, ttau, ptau and the ptau/ttau ratio and long-term prognosis in ALS 299 

There was a small-effect size inverse relationship between NfL and baseline ALSFRS-R total 300 

score (rho=-0.2, p=0.03): ALS patients with higher compared to lower NfL (median-split) 301 

revealed lower ALSFRS-R total scores (H(1)=4.6, p=0.03). 302 

Mixed effects linear models displayed a significant NfL main effect on longitudinal ALSFRS-R 303 

total score (e=-4.9, p=0.01), while there was no significant NfL × time interaction effect. This 304 

means that when averaging the ALSFRS-R total score across all available time points, ALS 305 

patients with higher compared to lower baseline NfL (median-split) show a -4.9 points lower 306 

mean value. 307 
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There was a trend-level group effect of slow, intermediate and fast progressors on baseline 308 

CSF NfL (H(2)=5.0, p=0.08). Posthoc analysis revealed that fast compared to intermediate 309 

progressors displayed significantly higher NfL (Z=2.3, p=0.02) (Figure 5A). In line with this, 310 

there was a small-effect size correlation between NfL and DPR (rho=0.2, p=0.07, trend-311 

level). 312 

Cox proportional hazard modelling depicted a 2fold to 3fold greater hazard of death for 313 

patients with high CSF NfL compared to patients having medium or low NfL (Exp(B) 314 

[95%CI]=0.5 [0.3, 0.9], p=0.01, Exp(B) [95%CI]=0.3 [0.1, 0.9], p=0.02). Hazard remained 315 

after model adjustment for age, sex, onset site, sporadic vs. familial ALS and baseline 316 

ALSFRS-R total score (Exp(B) [95 %CI]=0.4 [0.2, 0.8], p=0.007, Exp(B) [95 %CI]=0.3 [0.1, 317 

0.9], p=0.03; Figure 5B). 318 

Kaplan-Meier analysis was in line with those results, displaying significantly shorter median 319 

[SE] survival times of patients showing high (upper tercile, 34 [3] months) compared to 320 

medium (medium tercile, 48 [3], ²=6.1, p=0.01) or low baseline NfL (lower tercile, 45 [22], 321 

²=5.1, p=0.02; Figure 5C). 322 

There was no relationship between ttau, ptau or the ptau/ttau ratio and the patients’ 323 

functional scoring (ALSFRS-R), disease progression and survival. 324 

 

Figure 5. Disease progression and survival as a function of baseline CSF NfL values 

in ALS 
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Fast disease progression (averaged ALSFRS-R points lost per month >1.4) was related to 

higher baseline CSF NfL levels (A). B depicts predicted survival curves after covariate 

adjustment (age, sex, onset site, sporadic vs. familial ALS, baseline ALSFRS-R total score) 

for CSF NfL terciles (Cox proportional hazard modelling). ALS patients with high (3rd 

tercile) compared to medium (2nd tercile) and low (1st tercile) baseline NfL levels display a 

2fold to 3fold greater hazard of death. C demonstrates Kaplan-Meier analysis; median 

survival time was significantly shorter in ALS patients exhibiting baseline CSF NfL levels 

within the upper (3rd) tercile compared to patients revealing baseline CSF NfL 

concentrations within the medium (2nd) or lower tercile (1st). *p<0.05. 

  325 
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Discussion 326 

Our analysis argues that CSF NfL and the ptau/ttau ratio act as diagnostic biomarkers which 327 

at once relate to one another, to UMN involvement and DTI white matter signature of 328 

cerebral CST degeneration. A smaller ptau/ttau ratio was further indicative of whole-brain 329 

gray matter atrophy and widespread microstructural white matter pathology. Neither NfL nor 330 

CSF tau measures were related to peripheral motor axon involvement. Our results, 331 

moreover, demonstrate a particular relationship between higher baseline CSF NfL and 332 

greater disease severity, more rapid disease progression, greater hazard of death and 333 

shorter survival in ALS. These findings suggest that elevated CSF NfL and a lower ptau/ttau 334 

ratio are particularly biomarkers of central motor degeneration that together with measures 335 

emerging from microstructural white matter neuroimaging could be used to stratify ALS 336 

patients and to monitor their disease progression presumably allowing to assess the efficacy 337 

of future neuroprotective therapies. 338 

Irrespective of ALS pathophysiology, neurofilaments are structural constituents of the 339 

neuroaxonal cytoskeleton and integral components of synapses; they are essential for 340 

axonal growth, transport and signaling pathways. Neurofilaments are highly abundant in the 341 

large Betz cells of the motor cortex and in large-caliber myelinated axons, e.g. of the CST 342 

[44–47]. White matter and cortical injury is related to elevated CSF NfL that represents a 343 

downstream effect of neuroaxonal loss [48–51]. Tau is a microtubule-associated protein that 344 

is highly expressed in neuronal axons, e.g. in thin unmyelinated axons of the neocortical gray 345 

matter, providing axonal transport and maintenance of the neurons’ structure/morphology 346 

[52, 53]. Neuroaxonal degeneration results in increased release of tau from the brain into the 347 

interstitial fluid/CSF; and – like CSF NfL – elevation of CSF ttau likely reflects unspecific 348 

neuronal and axonal damage, as observed in many chronic neurodegenerative diseases 349 

[54]. High CSF ptau, however, specifically relates to the occurrence of neurofibrillary tangle 350 

formations and is one hallmark diagnostic biomarker of Alzheimer’s disease (AD) [55]. 351 
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This work replicates the results of several studies showing significantly higher CSF NfL levels 352 

in ALS compared to controls (e.g. [4, 6, 14]). Our findings, moreover, support recent data that 353 

ALS relates to a lower ptau/ttau ratio, indicating a shifted proportion of ttau and ptau which 354 

might be based on three constellations: ALS patients compared to controls reveal (i) higher 355 

CSF ttau, or (ii) lower CSF ptau, or both – (iii) higher CSF ttau together with lower CSF ptau. 356 

Recent studies reporting a reduced ptau/ttau ratio in ALS or ALS with frontotemporal 357 

dementia (ALS-FTD), either disclosed higher CSF ttau [24, 56, 57] or lower ptau [23]. 358 

Because phosphorylation of tau occurs mainly in AD and not so much in other 359 

neurodegenerative disorders, one may suspect that a lower ptau/ttau ratio probably reflects 360 

severe neuroaxonal damage in rapidly progressive diseases favoring the hypothesis of 361 

increased CSF ttau rather than a ptau reduction [57]. In our ALS sample, however, both ttau 362 

and ptau were unaltered, indicating that the ptau/ttau ratio seems to be a more sensitive 363 

candidate biomarker in ALS than CSF ttau or ptau alone. 364 

As shown before, in ALS CSF NfL is skewed towards lower levels, leaving the pivotal 365 

question what drives the substantial CSF NfL increase found in a certain ALS subgroup. Our 366 

data reveal that in ALS the variability of NfL depends on cerebral CST degeneration and 367 

UMN involvement, extending the findings of previous studies [4, 5, 16] by showing for the 368 

first time that those variables co-vary, implying that they are altered together in the same 369 

patient. This is supported by the fact that in ALS the strong DTI white matter signature in 370 

terms of CST FA decrease also relates to UMN pathology [28, 34, 58–60]. Constellation of 371 

high CSF NfL, CST degeneration and dominant UMN involvement additionally goes along 372 

with a lower ptau/ttau ratio. Supposing that a smaller ptau/ttau ratio indicates neuroaxonal 373 

injury, our findings emphasize that CSF NfL and the ptau/ttau ratio together stand for the 374 

extent and the severity of upper motor neuron degeneration in ALS. However, in contrast to 375 

NfL, a reduced ptau/ttau ratio further indicates gray matter atrophy and white matter integrity 376 

loss beyond upper motor neuron pathology. This suggests that the ratio could also serve as 377 
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a marker for extramotor involvement in ALS, which needs to be elucidated within future 378 

studies. 379 

In our sample CSF NfL and the ptau/ttau ratio were not only related to FA, but also to various 380 

DTI metrics (MD, RD). FA and RD alterations seem to be sensitive against demyelination, 381 

Wallerian-type myelin degeneration and axonal integrity loss, especially in chronic diseases 382 

with extended axonal damage; MD changes have, moreover, been speculated to relate to 383 

augmented cellularity (e.g. due to the loss of large myelinated axons) [61, 62]. As the 384 

biological underpinnings of differences in DTI variables are still unclear, especially in terms of 385 

co-existing underlying pathologies (i.e. axonal injury, demyelination, inflammation) [62, 63], 386 

we prefer to refrain from further interpretations of those particular findings. 387 

Our results are in line with two recent studies relating higher CSF NfL and a lower ptau/ttau 388 

ratio to altered DTI metrics in ALS [16, 23]. They, however, contradict another ALS study that 389 

did not find any relationship between CSF NfL and DTI CST integrity [6]. Steinacker et al. 390 

therein combine participants scanned on two different MRI systems and with two different 391 

field strengths (2/3 underwent a 1.5T MRI, 1/3 underwent a 3T MRI). The authors have 392 

shown that the data obtained from the two systems were comparable and they thus 393 

combined all the DTI values in a single analysis. A lower field strength (1.5T compared to 3T) 394 

inherently entails a lower signal-to-noise ratio that could, potentially, mask the presence of an 395 

effect like the relationship between FA values and NfL levels. Our study, as well as the 396 

aforementioned study of Menke and colleagues [16], which also reported a correlation 397 

between both FA and RD values and levels of NfL in ALS patients, is based on data acquired 398 

on a single 3T scanner employing only one protocol. This kind of design is likely to enhance 399 

the sensitivity of the study to detect effects that could, otherwise, be masked by noise. 400 

One might have expected to find an association between motor cortex thickness denoting 401 

UMN pathology and CSF NfL and the ptau/ttau ratio. As Betz cells and their gray matter 402 
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axons just represent a small fraction of the motor cortex their degeneration seems to be 403 

better mirrored by NfL levels or the ptau/ttau ratio instead of affecting the overall 404 

number/density of motor neurons/gray matter neuropil or precentral gyrus thickness, 405 

accounting for the absent relationship [42, 64]. 406 

We failed to find a relationship between CSF NfL or the ptau/ttau ratio, clinical LMN 407 

involvement and LMN biomarkers of axonal injury (e.g. reduced CMAP amplitudes or nerve 408 

CSA indicating muscle and nerve atrophy, respectively). However, patients with LMND 409 

clinical phenotype presenting isolated LMN signs, likewisely displayed elevated NfL 410 

concentrations or a reduced ptau/ttau ratio within the range of classic ALS. ALS disease 411 

mimics with sole LMN involvement, i.e. e.g. Kennedy’s disease or spinal muscular atrophy, 412 

do contrary not show abnormal neurofilament levels [5, 14]. Our findings of significant NfL 413 

increase across all clinical phenotypes are in line with previous observations in early 414 

symptom onset ALS [14], strengthening the role of NfL and ptau/ttau as biomarkers which 415 

enhance the diagnostic accuracy of ALS, especially in patients with predominant or isolated 416 

LMN signs. 417 

Corroborating previous findings, these analyses also indicate that in ALS higher CSF NfL 418 

refers to greater disease severity at baseline and longitudinal follow-up. It conversely 419 

remains vague whether higher baseline NfL also relates to a steeper decline or a steady 420 

trajectory of overall motor function (group effect of slow, intermediate and fast progressors on 421 

NfL vs. non-significant time × median-split baseline NfL interaction effect on longitudinal 422 

ALSFRS-R total score). Considering the latter, it might be possible that a certain ALS subject 423 

just comes into the disease with an already determined signature of functional performance 424 

and related CSF NfL levels. This would be in line with recent analysis demonstrating no or 425 

just minimal change of CSF and highly related serum neurofilament concentrations over the 426 

course of disease [7, 11, 13]. Especially at the lower end of CSF NfL levels in ALS, there 427 

might be a continuous turnover of neurofilaments as a result of an equilibrium between 428 
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neurodegeneration and –regeneration, with the latter depending on individual variables (e.g. 429 

genetics, resilience, exposure to environmental (epigenetic) factors throughout life [43]). Due 430 

to such individual circumstances a certain ALS subgroup abandons that equilibrium 431 

(supposedly at an already preclinical state or rather suddenly indicating the onset of 432 

irreversible neuroaxonal damage [5, 65]), passing the threshold for disease development and 433 

CSF NfL increase which in turn relates to shorter survival. This model especially holds true 434 

for the ALS conversion of asymptomatic familial cases revealing normal CSF NfL at 435 

presymptomatic but highly elevated levels at symptomatic disease stages [4, 11, 65]. We, 436 

however, refrained from comparing NfL between sporadic and familial ALS, because of the 437 

small number of genetic variants. Impact of CSF NfL on long-term prognosis remains 438 

significant after the adjustment for several disease-modifying variables, replicating previous 439 

findings [4, 7] and suggesting NfL to aid as an independent prognostic biomarker. 440 

The association of the same biomarker with both UMND ALS and worse prognosis is 441 

somewhat puzzling, as the UMND phenotype compared to classic ALS usually has a slower 442 

functional decline. Our results may thereby point to the existence of distinct groups 443 

displaying high CSF NfL: UMND ALS with longer survival despite high CSF NfL and ALS 444 

patients with combined UMN and LMN pathology (classic disease phenotype), high CSF NfL 445 

and worse prognosis [4] (see follow-up analysis in the Supplemental and Supplemental 446 

Figure 3). Further studies are indeed needed to disentangle the existence of such 447 

subgroups. 448 

The strength of our study is the availability of a considerable set of locally well-established 449 

imaging biomarkers used to understand the co-variance patterns between CSF NfL, CSF tau 450 

measures and further measures of PNS and CNS neuroaxonal damage in ALS. Limitations 451 

comprise: (i) our cross-sectional and retrospective approach, (ii) the relatively small sample 452 

size of distinct clinical ALS subgroups (especially of UMND ALS, making up only 11% of our 453 

patient cohort), which kept us from performing extensive phenotype-wise analysis (of e.g. the 454 
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relationship between CSF measures and neuroaxonal injury markers), as well as (iii) the 455 

absence of measures of serum NfL and phosphorylated neurofilament heavy chain (pNFH) 456 

(e.g. to investigate the superiority of one marker to reflect disease severity and biomarker 457 

neuroaxonal injury). An additional limitation of the study is the heterogeneity among the 458 

number of patients who underwent each assessment (Supplemental Figure 1). 459 

Nevertheless our findings overall strengthen the idea that combining CSF NfL, the ptau/ttau 460 

ratio, CST DTI metrics and clinical measures (of e.g. UMN pathology) improve the diagnostic 461 

accuracy and prognostic assessment in ALS.  462 
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Tables 698 

Table 1. Demographics and clinical data of the sample under investigation 699 

 ALS  

(n=89) 

Controls  

(n=33) 

P-value 

Age, in years  63 (33-83) 60 (32-76)* 0.06 

Male sex, n (%) 54 (61) 16 (49)# 0.3 

Sporadic ALS / Familial ALS, n (%) 63 (91) / 6 (9)1   

El Escorial na / suspected / possible / 

probable / definite, n (%) 

1 (1) / 24 (27) / 34 

(38) / 15 (17) / 15 (17) 

  

Clinical phenotypes classic / LMND / 

UMND / PLS, n (%) 

46 (52) / 31 (35) / 10 

(11) / 2 (2) 

  

Disease onset bulbar / limb, n (%) 29 (33) / 60 (67)   

Disease duration, in months 10 (0.2-190)   

Disease progression rate, in 1 / months 0.7 (0.04-3.3)   

ALSFRS-R total score / 48, baseline 41 (4-48)   

Unless otherwise reported, medians and (ranges) are given. ALS, amyotrophic lateral 700 

sclerosis; ALSFRS-R, revised ALS functional rating scale; LMND, lower motor neuron 701 

dominant; na, not applicable; PLS, primary lateral sclerosis; UMND, upper motor neuron 702 

dominant; 1familial ALS comprised 2 cases with C9orf72 positivity and 4 patients with SOD1 703 

positivity, *Mann-Whitney U test, #² test. P-values <0.05 were deemed to be statistically 704 

significant. 705 


